
SIMULATING SENSORNETWORKS IN NS-2 [DRAFT]

Ian Downard
Naval Research Laboratory

Code 5523
4555 Overlook Ave

Washington DC, 20375-5337
downard@itd.nrl.navy.mil

June 11, 2003

Abstract

Building an optimal sensor network involves deliberately addressing each of a wide range of issues,
such as physically detecting phenomena, deducing environmental information from raw sensor data, and
communicating important alerts through an ad-hoc wireless network to an outside observer; all under
tight energy constraints. Because of the complexity of these issues, the simulation environment provides
an attractive universe for sensor network engineers to investigate the consequences of using various
protocols and configurations. This was the motivation behind NRL’s sensor network extensions to ns-2.
In this paper, we describe how we added these extensions into the ns-2 framework, and illustrate their
utility with a case study examining Mobile Ad-Hoc Network (MANET) routing within a dynamic sensor
network. Finally, we will describe the limitations inherent to our simulation environment.

1 Introduction

Our idea of a sensor network is an autonomous, multi-hop, wireless network with nondeterministic
routes over a set of possibly heterogeneous physical layers. Routing will occur throughout the network
at nodes configured in ad-hoc mode. Our purpose is to evaluate how well current routing layer standards
support the requirements of various layers in these sensor networks.

The primary objective of this project was to establish a foundation in ns-2 for simulating sensor
networks. This foundation, illustrated in Figure 1, consists of dual-homed sensor nodes that are tapped
into an 802.11 channel for communicating with other network stations and into a phenomenon channel for
detecting phenomena emanating in that medium. This work is a small contribution that should benefit sensor
network research where simulation is appropriate. It is an effort to aid the analysis of various sensor network
configurations under the demands of specific sensor applications.

The paper begins with an overview of ns-2, followed by a description of our extensions to ns-2
and guidelines for using them in simulations. We conclude with a section to illustrate a sensor network
simulation and a final section to list important areas for future improvement of our model.

1

2 NS-2 Overview

The ns-2 simulation environment [1] offers great flexibility to investigate the characteristics of sen-
sor networks because it already contains flexible models for energy constrained wireless ad-hoc networks.
In the ns-2 environment, a sensor network can be built with many of the same set of protocols and charac-
teristics as those available in the real world. The mobile networking environment in ns-2 includes support
for each of the paradigms and protocols shown in Figure 2. The wireless model also includes support for
node movements and energy constraints. By leveraging the existing mobile networking infrastructure, we
added the capability to simulate sensor networks. The only fundamental aspect of sensor networks miss-
ing in ns-2 was the notion of a phenomenon such as chemical clouds or moving vehicles that could trigger
nearby sensors through a channel such as air quality or ground vibrations. Once a sensor detects the “ping”
of a phenomenon in that channel, the sensor acts according to the sensor application defined by the ns-2
user. This application defines how a sensor will react once it detects its target phenomenon. For example,
a sensor may periodically send a report to some data collection point as long as it continues to detect the
phenomenon, or it may do something more sophisticated, such as collaborate with neighboring sensor nodes
to more accurately characterize the phenomenon before alerting any outside observer of a supposed occu-
rance. For each sensor network there is a unique sensor application to accomplish phenomena detection,
such as surveillance, environmental monitoring, etc. With ns-2, we have provided the facility to invoke sen-
sor applications by phenomena. With these sensor applications, we can study how the underlying network
infrastructure performs under various constraints.

3 Related Work

Modeling sensor networks for simulation has not received as much research as other areas like
information processing and energy conservation. In fact, we are aware of only one project whose objective
included building flexible simulation tools specifically for sensor networks. Park, Savvides, Srivastava [4]
developed extensions to ns-2 for this purpose, but with an emphasis on sophisticated modeling of energy
consumption and emulation (i.e. interfacing with real world sensor nodes). Unfortunately, their work has
not been updated to support subsequent releases of ns-2 since October, 2000.

4 The Extended NS-2 Architecture

We modeled the presence of phenomena in ns-2 with broadcast packets transmitted through a desig-
nated channel. The range of phenomena is the set of nodes that can receive the PHENOM broadcast packets
in that channel1. This pattern will follow whichever radio propagation model (free space, two ray ground,
or shadowing) included with the phenomenon node’s configuration. These propagation models roughly
cover a circle, but other shapes could be achieved by varying the range of PHENOM broadcast packets and
creatively moving a set of phenomenon nodes emanating the same type of phenomenon.

1This reflects the range of sensitivity of the sensors. For example, PHENOM broadcasts with a long range would simulate
highly sensitive sensors. The sensitivity of a single sensor can be controlled by setting the receive and carrier sense thresholds in
defined inmac/wireless-phy.cc .

2

Emanating PHENOM broadcast packets is accomplished by the “PHENOM routing protocol”2,
which simply broadcasts PHENOM packets with a certain configurable pulserate. When a PHENOM packet
is received by a node listening on the phenomenon channel, a receive event is passed to that node’s sensor
application.

4.1 Modifications to NS-2

Figure 3 shows where our extensions are arranged within the ns-2 framework. The major additions
and modifications are explained below. Section 4.3 shows how our extensions fit into ns-2’s class hierarchy.

trace/cmu-trace.cc,h TheCMUTrace class is used to print important parts of a packet to the sim-
ulation’s trace file. Since we introduced a new packet type for phenomena, we had to describe the
corresponding packet format in this class.

tcl/lib/ns-lib.tcl This component of the infrastructure interprets node configurations specified
in the ns-2 simulation script. Our extensions introduced two new node types, the sensor node and
the phenomenon node. Therefore, we added some arguments in thenode-config function to
accommodate them.

tcl/lib/ns-mobilenode.tcl In ns-2’s virtual world, we’re using its existing capacity for multi-
channel wireless networking as a means to emanate phenomena of various kinds. By using a dedicated
channel for phenomena, we can simulate the unique physical medium that they occupy in the real
world. Thus, as shown in Figure 1, sensor nodes will need to have two interfaces, one to the 802.11
channel and one to the PHENOM channel. We implemented this kind of “multi-homed” capability in
ns-mobilnode.tcl .

common/packet.h Each packet in ns-2 is associated with a unique type that associates it with the pro-
tocol that it belongs to, such as TCP, ARP, AODV, FTP, etc. Since we created a new protocol for
emanating phenomena, we defined it’s corresponding packet type in thepacket.h header file.

mac/wireless-phy.cc Ns-2 contains an energy model for wireless nodes that can be used to investi-
gate the benefits of various energy conservation techniques, such as node sleeping or utilizing optimal
network densities. The model includes attributes for specifying the power requirements of trans-
mitting packets, receiving packets, or idly standing by during times of network inactivity. Sensing
phenomena is a process that may consume power at another rate, so it’s important to consider this
where sensor network simulations are concerned. Inmac/wireless-phy.cc , we’ve included the
capability of specifying the amount of power consumed by nodes while sensing phenomena.

Other small modifications were made tomac/mac.cc , tcl/lib/ns-namsupp.tcl , andqueue/priqueue.cc
in order to facilitate the second interface to the phenomenon channel on sensor nodes, to fix a bug in ns-2’s
node coloring procedure, and to include the new PHENOM packet type into the ns-2 framework.

2This functionality best fit into ns-2’s existing ad-hoc wireless networking infrastructure as a routing protocol, even though
it does not actually route at all. The MAC layer it operates above must be specified in the phenomenon node’s configuration.
Although real-world phenomena can interfere in a variety of ways, we ignore this aspect and use the basic “Mac” class, which
seems to prevent channel contention.

3

4.2 Additions to NS-2

Every sensor network simulation must have phenomenon nodes that trigger sensor nodes, but the
traffic sensor nodes generate once they detect phenomena depends on the function of the sensor network.
For example, sensor networks designed for energy efficient target tracking [5] would generate more sensor-
to-sensor traffic than a sensor network designed to provide an outside observer with raw sensor data. This
function is defined by the sensor application which is intended to be customized according to the traffic
properties associated with the sensor network being simulated. The objects and functions we have just
described are implemented in the following files:

phenom/phenom.cc,h This file implements the PHENOM routing protocol used for emanating phe-
nomena. It includes parameters for the pulse rate and the phenomenon type (Carbon Monoxide,
heavy seismic activity, light seismic activity, sound, or generic). These types are just names that can
be used to identify multiple sources of phenomena in trace files. The pulse rate is the only parameter
that actually controls how a phenomenon emanates.

sensornets-NRL/sensoragent.cc,h The ns manual [6] describesagentsas “endpoints where
network-layer packets are constructed or consumed”. Sensor nodes use asensor agentattached to
the phenomenon channel for consuming PHENOM packets, and a UDP or TCP agent attached to
the wireless network channel for constructing packets sent down from the sensor application. Sensor
agents act as a conduit through which PHENOM packets are received and processed by sensor appli-
cations. The sensor agent does not actually look at the contents of the PHENOM packet, it simply
marks the packet as received and passes it to the sensor application. This agent is implemented in
sensoragent.cc .

sensornets-NRL/sensorapp.cc,h The sensor application defined in this file utilizes node color
and generates sensor reports to show when the corresponding sensor node detects phenomenon3.
Specifically, when the node is receiving PHENOM packets, this application changes the node color to
red, activates an “alarm” public variable, and sends a sensor report of MESGSIZE bytes to the sink
node of a UDP (or TCP) connection once per TRANSMITFREQ seconds. When the node has not
received a PHENOM packet in the timeout period specified by SILENTPHENOMENON, then the
node color changes back to green. If node color is desired to illustrate energy levels instead of sensor
alarm status, then that aspect of the application can be disabled with DISABLECOLORS.

A visualization of this sensor application is shown in Figure 4.

sensornets-NRL/phenom packet.h This file defines the structure of PHENOM packets. The five
phenomenon types defined here (CO, HEAVYGEO, LIGHT GEO, SOUND, and TESTPHENOMENON)
correspond to Carbon Monoxide, heavy seismic activity, light seismic activity, audible sound, and
some generic phenomenon. These types are most useful for simulations involving multiple phe-
nomenon nodes, in order to easily distinguish who a given sensor node is detecting by looking at the
ns-2 trace file.

3The four environment variables that can be used to customize this application are SILENTPHENOMENON, DIS-
ABLE COLORS, MESGSIZE, and TRANSMITFREQ.

4

4.3 The Extended NS-2 Class Hierarchy

The Doxygen documentation system [8] was used to generate Figures 5, 6, and 7 that illustrate
how our extensions fit into ns-2’s class hierarchy. Dotted lines show where a class is using the methods
and members of another class. Solid lines show where a class is inheriting the methods and members from
another class.

5 Capabilities, Guidelines, and Caveats.

This section describes the capabilities of our sensor network extensions, gives some guidelines for
configuring simulations, and attempts to explain some areas of likely confusion. In this section, we assume
the reader is already familiar with setting up mobile node simulations in ns-2. For readers who are not, the
following URLs provide background:

http://nile.wpi.edu/NS/
http://www.isi.edu/nsnam/ns/tutorial/index.html
http://www.isi.edu/nsnam/ns/tutorial/nsscript5.html

The easiest way to create sensor network simulations is to use thescript maker.pl utility in
the simulations aids directory distributed with our extensions. This Perl script contains commonly
used parameters for setting up sensor network simulations and automatically generates the often complex ns
simulation script. The remainder of this section describes how to code a sensor network simulation into the
ns simulation script, without using thescript maker.pl utility.

Setting up a sensor network in ns-2 follows the same format as mobile node simulations. The best
way to create your own simulation is to modify one of the examples distributed with our code [7].

Places where a sensor network simulation differs from a traditional mobile node simulation are
listed below. Setting upns , god , tracing, topography objects and starting and stopping the simulation are
all the same as in traditional mobile node simulations.

1. Configure a phenomenon channel and data channel.

Phenomenon nodes should emenate in a different channel than sensor nodes in order to avoid con-
tention at the physical layer. All phenomenon nodes should be configured on the same channel, even
if they’re emanating different types of phenomena.

set chan 1 [new $val(chan)]
set chan 2 [new $val(chan)]

2. Configure a MAC protocol for the phenomenon channel.

Choose a MAC layer to use for emanating phenomena over the phenomenon channel. Using 802.11
probably isn’t appropriate, since phenomena should be emanating without regard to collisions or
congestion control. We suggest using the basic “Mac” class instead.

5

Figure 1: This is the foundation of the sensor network model used in ns-2.

Figure 2: These are some of the paradigms and protocols available for wireless networking in ns-2. Some
protocols like OLSR [2] and SMAC [3] have not yet been incorporated into USC’s ns-2 distributions [1],
but they can be retrieved from their respective developers’ sites.

Figure 3: This figure illustrates which files in the ns-2 framework were modified (see left side) or added (see
right side).

Figure 4: Visualization of a simulated sensor network with 25 stationary sensor nodes, 20 mobile phenom
nodes simulating a gas cloud, and one stationary data collection point. The red sensor nodes detect the
phenomenon, the green ones do not. The phenomenon nodes are large and blue, and the data collection
point is the black node in the far upper-right corner.

Figure 5: Collaboration diagram for the PHENOM class.

Figure 6: Collaboration diagram for the SensorAgent class.

Figure 7: Collaboration diagram for the SensorApp class.

6

set val(mac) Mac/802 11 ;# MAC type for sensor nodes
set val(PHENOMmac) Mac ;# MAC type for phenomena

3. Configure phenomenon nodes with the PHENOM “routing” protocol:

Use node-config, just like with mobile nodes, but specify PHENOM as the routing protocol so the
phenomenon is emanated according to the methods defined inphenom/phenom.cc . Also, be sure
to configure in the channel and MAC layer previously specified for phenomena broadcasts.

$ns node-config \
-adhocRouting PHENOM \
-channel $chan 1 \
-llType LL \
-macType $val(PHENOMmac) \
-ifqType Queue/DropTail/PriQueue \
-ifqLen 50 \
-antType Antenna/OmniAntenna \
-propType Propagation/TwoRayGround \
-phyType Phy/WirelessPhy \
-topoInstance $topo \
-agentTrace ON \
-routerTrace ON \
-macTrace ON \
-movementTrace ON

4. Configure the Phenomenon node’s pulse rate and type.

The two parameters that can be used to customize phenomena are listed below. They are both optional.

(a) pulserate FLOAT

• FLOATmust be a real number.

• Describes how frequently a phenomenon node broadcasts its presence.

• Defaults to 1 broadcast per second.

(b) phenomenon PATTERN

• PATTERNmust be any one of the following keywords: CO, HEAVYGEO, LIGHT GEO,
SOUND, TESTPHENOMENON corresponding to Carbon Monoxide, heavy seismic ac-
tivity, light seismic activity, audible sound, and some other generic phenomenon.

• This option is mostly useful for simulations involving multiple phenomenon nodes, so that
it is easier to distinguish who a sensor node is detecting by looking at the NS trace file.

• Defaults to TESTPHENOMENON.

[$node (0) set ragent] pulserate .1 ;#PHENOM emanates 10x/s
[$node (0) set ragent] phenomenon CO ;#Carbon Monoxide PHENOM

7

5. Configure sensor nodes.

Sensor nodes must be configured with the-PHENOMchannel attribute and the-channel attribute.
PHENOMchannel must be the same as the channel you configured the phenomenon node with.
The other channel is the channel that will be used for communicating sensor reports. Sensor node
configurations must also specify a MAC protocol for the phenomena channel and a MAC protocol
(such asMac/802 11) for the channel shared with other wireless nodes. This is done with the
-PHENOMmacTypeand-macType attributes.PHENOMmacTypeshould be the same as the mac-
Type used in PHENOM nodes, andmacType should be the same as the macType used in other nodes
participating in the MANET network (such as 802.11).

$ns node-config \
-adhocRouting $val(rp) \
-channel $chan 2 \
-macType $val(mac) \
-PHENOMmacType $val(PHENOMmac) \
-PHENOMchannel $chan 1

If desired, a sensor node can be configured so that a specified amount of energy will be deducted from
its energy reserve each time it receives a phenomenon broadcast. To set this up, include the following
parameters in the sensor node’snode-config routine:

-energyModel EnergyModel \
-rxPower 0.175 \
-txPower 0.175 \
-sensePower 0.00000175; \
-idlePower 0.0 \
-initialEnergy 0.5

where,

rxPower .175 indicates175mW consumed for receiving a packet of arbitrary size

txPower .175 indicates175mW consumed for transmitting a packet of arbitrary size

sensePower .00000175 indicates1.75µW consumed for receiving a PHENOM broadcast packet

initialEnergy 5 indicates a total energy reserve of5J

IMPORTANT CAVEAT:

Ns-2’s energy consumption model utilizes color to illustrate when a node is about to exhaust its
energy. In order to avoid confusion in the nam visualization, the node coloring that is part of the
sensor application should be disabled with theDISABLE COLORSdefinition in sensorapp.cc .
(Remember to run make again to compile those changes into the ns-2 executable).

In addition toDISABLE COLORS, some other sensor node parameters can be specified insenso-
rapp.cc . These parameters are listed below:

SILENT PHENOMENON is the seconds of quiescence required for a sensor to go off it’s alarming
state. Example:

8

#define SILENT PHENOMENON 0.2

DISABLE COLORS disables node color changes invoked by the sensor application. This is useful
when it is desired to use node color to illustrate a node’s energy reserves. Example:

#define DISABLE COLORS FALSE

MESG SIZE is the size (in bytes) of the messages to send to the gateway, or data collection point,
or whatever you want to call the sink node attached to this sensor node (over UDP, for example).
Example:

#define MESG SIZE 256

TRANSMIT FREQ is the frequency with which a sensor node triggered by PHENOM packets will
send a message to the the sink node attached to this sensor node. Units are in seconds, so
a message of sizeMESGSIZE bytes will be transmitted to the gateway node once for every
TRANSMITFREQseconds in which the sensor node has received one or more PHENOM pack-
ets. Example:

#define TRANSMIT FREQ 0.1

6. Configure non-Sensor nodes, such as data collection points, or gateways for the sensor network.

Nodes that are not sensor nodes or phenomenon nodes, should not be configured with aPHENOM-
channel , since their only interface is to the MANET network. This is done with the-PHENOMchannel
"off" attribute.

$ns node-config \
-adhocRouting $val(rp) \
-channel $chan 2 \
-PHENOMchannel "off"

7. Attach sensor agents.

Create a sensor agent for each sensor node, and attach that agent to its respective node. Also, specify
that all packets coming in from the PHENOM channel should be received by the sensor agent. In
the following example,$i would represent the node number for the sensor node currently being
configured.

set sensor ($i) [new Agent/SensorAgent]
$ns attach-agent $node ($i) $sensor ($i)

specify the sensor agent as the up-target for the sensor node’s link
layer configured on the PHENOM interface, so that the sensor agent
handles the received PHENOM packets instead of any other agent
attached to the node.
[$node ($i) set ll (1)] up-target $sensor ($i)

8. Attach a UDP agent and sensor application to each node (optional).

How the sensor nodes react once they detect their target phenomenon is a behavior that should be
defined in the sensor application. One such application might involve sensor nodes alerting a data

9

collection point via UDP with information about the phenomenon. The following example illustrates
how an application like that could be setup. Again,$i represents the node number for the sensor node
currently being configured.

set src ($i) [new Agent/UDP]
$ns attach-agent $node ($i) $src ($i)
$ns connect $src ($i) $sink

set app ($i) [new Application/SensorApp]
$app ($i) attach-agent $src ($i)

9. Start the sensor application.

The sensor node can receive PHENOM packets4 as soon as the sensor agent is attached to the node.
Since the sensor agent does nothing but notify the sensor application of received phenomenon broad-
casts, the sensor node does not visibly react to PHENOM packets until the sensor application has been
attached and started. The following example shows how to start a sensor application:

$ns at 5.0 "$app ($i) start $sensor ($i)"

6 Case Study: MANET Routing Within a Dynamic Sensor Network

This case study begins to show the types of results one can achieve from sensor network simulations
with ns-2. Suppose we’d like to characterize how well AODV scales with the size of a sensor network
running the sensor application defined at the end of section 4. We will look at networks of stationary sensors
with infinite energy placed in a grid withd units of distance between adjacent nodes. Our network will
range from 50 sensor nodes to 2000 sensor nodes. We will limit the broadcast range of 802.11 radios and
the range of the phenomenon to

√
2d2, as shown in Figure 8. Since we’re using the Two-ray Ground radio

propagation model, nodes within this boundary always receive the broadcast and nodes outside never receive
the broadcast.5

Figure 8: This figure illustrates the maximum broadcast used in our case study. If we use the Two-ray
Ground radio propagation model, then node 13 can never broadcast further than the ideal circle with radius√

2d2.

We will excite the network with a single phenomenon node that slowly travels along the perimeter
of the sensor network grid. As the grid density increases, the phenomenon will encounter sensor nodes more
frequently. Thus, as the grid density increases, AODV will flood more route requests through the network.
As the network becomes more congested, we should observe higher latency and higher loss rates in sensor

4Phenomenon nodes start emanating immediately once the simulation starts. A delayed start can be realized by reducing
the range of phenomenon broadcasts to such a small area that they are effectively inaudible to any sensors (unless they occupy
the exact same coordinate in the grid). A phenomenon node can be turned off this way with a command like,$ns at 6.0
{[$node ($i) set netif (0)] set Pt 0.0001 }. Pt is the range of the broadcast, and$i is the node id of the
Phenomenon node.

5In reality, this boundary is a random variable due to complex fading and interference effects.

10

Figure 9: Latency shown as a function of network size.

Figure 10: Data rates shown as a function of network size.

reports delivered to the stationary data collection point. See Figures 9, 10, and 11 for latency, data rate, and
loss fraction statistics.

THIS SECTION IS INCOMPLETE

• What’s the point of this section?
(To show the utility in our ns-2 extensions).

• How does this case-study proove that point?
(By illustrating complex traffic patterns which would be a bear to reproduce without said ns-2 exten-
sions).

• How did we generate the plots?
(With MGEN.)

• What is MGEN?
(Oh great! Don’tyoustart!)

7 Software References

7.1 NRL Sensor Network Extensions to NS-2

NRL’s code and documentation for extending ns–2.1b9a or ns–2.26 to support sensor network sim-
ulations is available here:

http://pf.itd.nrl.navy.mil/projects/nrlsensorsim/

7.2 NRL OLSR Extensions to NS-2

One of the original motivations behind building the sensor network extensions into ns-2 was to
compare the behaviors of OLSR and AODV routing algorithms. NRL’s OLSR extension to NS–2 is available
for download via CVS [2].

11

8 Bugs

Phenomenon nodes receive broadcasts from other phenomenon nodes. This doesn’t seem to effect
simulation results on the IP side of the network, but it does make the simulations much longer and trace files
much larger when multiple phenomenon nodes are being used in close proximity.

Please direct all bug reports to Ian Downard,<downard@itd.nrl.navy.mil> .

9 Future Work

Much more effort should be made to improve how phenomenon emanates. Presently, it follows the
behavior of an 802.11 broadcast, configured with one of the following radio propagation models:

1. Free Space Model

2. Two Ray Ground Model

3. Shadowing Model

The first two models represent the communication range as an ideal circle, whose boundary is an
absolute limit on signal range. The Shadowing model applies a more probabilistic means of determining
whether a receiver on the boundary can receive the signal.

Using a radio propagation model to simulate anything other than electromagnetic wave propagation
is probably unrealistic. So, the radio propagation model should be extended to create various phenomenon
propagation models that could specifically address the characteristics of phenomena such as seismic wave
propagation or gas dispersion.

10 Conclusion

The primary contribution of our extensions to ns-2 is the capability to invoke network traffic in man-
ners consistent to the patterns expected for sensor networks. Our notion of sensor applications responding
to a phenomenon node moving through a grid of sensor nodes is analogous to the Frisbee model [9], where
the set of active sensors follows under the range of a mobile phenomenon. Coordinating these unique traffic
patterns in ns-2 without our extensions requires very much effort for medium to large networks. Aside from
generally increasing the flexibility of ns-2, this work facilitates our objective to evaluate how well current
MANET routing protocols support the requirements of various sensor network applications.

References

[1] The Network Simulator - ns-2,http://www.isi.edu/nsnam/ns/

12

[2] NRL’s OLSR implementation for ns-2,http://pf.itd.nrl.navy.mil/projects/olsr/

[3] Wei Ye, John Heidemann, Deborah Estrin. “An Energy-Efficient MAC Protocol for Wireless Sensor
Networks,” in the Proceedings of the IEEE INFOCOM, 2002.

[4] SensorSim: A Simulation Framework for Sensor Networks.
http://nesl.ee.ucla.edu/projects/sensorsim/

[5] H. Yang, B. Sikdar. “A Protocol for Tracking Mobile Targets using Sensor Networks,” in the Proceed-
ings of the First IEEE International Workshop on Sensor Network Protocols and Applications, pp.
71-81, Anchorage, AK, May 2003.

[6] The ns Manual,http://www.isi.edu/nsnam/ns/ns-documentation.html

[7] NRL’s Sensor Network Extension to ns-2,http://nrlsensorsim.pf.itd.nrl.navy.mil/

[8] The Doxygen documentation system,http://www.doxygen.org

[9] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao, “Habitat Monitoring: Applica-
tion Driver for Wireless Communications Technology,” in the Proceedings of the ACM SIGCOMM
Workshop on Data Communications in Latin America and the Caribbean, April 2001.

13

Figure 11: Loss fractions shown as a function of network size.

14

